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\ Abstract

A posteriori error estimates are derived for the finite element method

presented in Part I. These estimates are proven to have the property that

;; the effectivity index 6 = (error estimate/true error) converges to one as the
maximum mesh size goes to zero. An adaptive mesh refinement strategy 1is

j; based on equilibriating local error indicators whose sum comprises the

global error estimate. Numerical results show that 6 is nearly one even on

coarse meshes, and that optimal meshes are created by the adaptive procedure.

The successful solution of a non linear problem-modelling flow through an
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expanding duct, makes evident the robustness of the method. __
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CHAPTER 1

INTRODUCTION

This paper is the second part of a two part series in which an adaptive
finite element method for convection diffusion problems is derived and analyzed.
In the first paper an upwinded finite element method was described which was
shown to yield a quasi—opfimal approximation to the exact solution of the

model problem

-eu" + a(x)u' + b(x)u = £ in (0,1)
(1.1) u(0) = a

Blu'(l) + Bzu(l) = B,

Although quasi-optimality is mathematically important, the goal of a
numerical computation is to provide an accurate approximation to the exact
solution of a matbematical model describing some physical phenomena.
Therefore, a numerical computation should not only produce an approximate
solution, but also an estimation of its accuracy.

The effectiveness of such an error estimate can be measured by the .
effectivity index

@ = (error estimate/true error).
Using the upwinded finite element method described in Part I to solve (1.1),
an a posteriori estimator is found such that 6 - 1 as the maximum mesh spacing
h = h(A) +» 0. An error estimator with this property is called asymptotically
exact. Computationally, the value of |1 - 8| is shown to be small, often less

than .2, even on coarse meshes.
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These estimates are derived by first considering a projection of the
true error onto a space of functions which is zero at the nodes. This pro-
jected error is shown to be close to the true error in norm. Since the
projected error is zero at the nodes it can be approximated locally. There-
fore, each interval has a local error indicator associated with it, and the
global error estimate is simply a sum of these indicators.

The error indicators lead to a procedure for adaptive mesh refinement.

It has been shown by Babuska and Rheinboldt (1], (3] that the equilibriation
of the error indicators leads to an optimal mesh. A strategy based on this
face has been developed and described in [2], [4], [5]. That strategy is
used in this paper as well.

This refinement strategy is completely automated by the computer. First,
an initial solution is obtained on an unrefined mesh. Error indicators are
calculated for each element and an error estimate is computed by summing the
indicators. If the estimate is below some prescribed tolerance, the algorithm
stops. Otherwise, a threshold value is computed and all elements having
indicators above this threshold are subdivided. The algorithm continues in
this way until either the specified tolerance is attained or computer resources
are used up. Numerical results show this algorithm to be very effective in
resolving boundary layers or other singularities in the solution.

An adaptive procedure based on a posteriori error estimates has been
developed by Reinhardt ({13], [14]) for a norm which arises from symmetrizing
the bilinear form. The method of symmetrization was first studied by Barrett
and Morton in [6] and [7]. Unfortunately, for problems of the form (1.1)
with b(x) # 0, the method described by Reinhardt requires the solution of a
full matrix equation, instead of the usual band matrix for the conventional

or upwinded methods. 2
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In Chapter 2 of this paper we summarize the results from Part I. This
provides the mathematical framework for the problem. The a posteriori

estimates are derived in Chapter 3 and are proven to be asymptotically exact.

Finally, some numerical results are presented in Chapter 4. The examples
were selected in order to show the optimality of the method, the reliability
of the error estimates, and the robustness of the algorithm. The robustness
is displayed through the successful solution of a non-linear problem with a
turning point. This problem arises from a model of flow through an expahding

duct.

The asymptotic theory presented in this paper is based on the assumption
that the maximum mesh size h is small. In the adaptive mode, this is not
quaranteed. Ratios of the maximum step size to the minimum step size often
exceeded 250 in the numerical experiments of Chapter 4. This suggests that

this requirement is not necessary in practice.

Numerical results for a simple 2-D problem in which the flow is in the
direction of the x-axis have been performed (with a posteriori estimates and
adaptivity) and appear very promising. These results as well as further 1-D

examples are in preparation.
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CHAPTEP 2

PRELIMINARY RESULTS

In this chapter we summarize the results of f[9] which are needed in

this paper. The following notations are used:

HE(I), k=0,1,..., 1 <p <« is the usual Sobolev space on the
interval I = [0,1] consisting of functions
with k derivatives in Lp(I).
A= {0= I T T 1}, where N = N(A) is an arbitrary
mesh on I,

h, = x, - X and I, = (xj_l, xj) for j =1,..., N. pj = (hj + h )/2 for

j+1

h,, and h = max h,

j:l,..., N-l, C‘N N J i

A variational setting will be presented for the problem

Lu Z-¢eu" + a(x)u’' + b(x)u = f in 1,

(2.1) u(0)

Ly

+

Fu) = 8ju'(1) + 8,u(l) = 8.

For the operator L we assume

Al: ax)€ clio,11, a) > a >0,
bx) € (0,11, bx) >b ,
ii and b is such that 3? + 4eb =y > 0.
fﬁ For the boundarv operator ' we assume
i‘ A2: B198, 2 0, By + 8, > 0.
sl
' The assumptions Al and A2 are sufficient to ensure that a maximum principle
for (2.1) holds, and the Green's function for L is bounded uniformlv bv a con-
f‘ stant independently of €.
'hf'
: )
-
o
-
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We also have additional assumptions on the input data, namely,

i) The source term [ is of the form f = fo + fl’ where fOEZ Ll(I) and

N-1
f. = 1 C,8(x - x,), where 6(x - x,) is the Dirac delta function
1 i=1 i i i
N-1
at the meshpoint x = X, Furthermore, I ICiI = K 1s independent
i=1

of N and f is independent of e.

i1) a is bounded independently of e¢. Also, if 81 # 0 then %E is
1
Bl
bounded independently of ¢ and if 81 = 0 then N is bounded
2

independently of ¢.

a(x)/I.€: Cr+2(1j), b(x)/I.€: Cr+1(Ij), fo(x)/1,€: Cr+1(Ij) (r will be

J J J
specified later), and a(x) and b(x) are independent of .

In [19] Chapter 2 it was shown that assumptions Al-A3 are sufficient to ensure

the existence of a unique solution to (2.1) which is

€

bounded independently of

Assumptions Al-A4 are assumed to hold throughout this paper. Furthermore,

without loss of generality, we restrict ourselves to the case of homogeneous

essential boundary conditions, i.e, o = 0, and if 81 = 0 then B = 0. This

restriction is made for the theorv only, and not for the numerical examples

presented.

then the solution to (2.1) is bounded independently of «.

are assumed to hold throughout this paper.

Let L* denote the formal adjoint operator to L, i.e.,

2

Lx = ¢ 9_ - a(x)
2
dx

d

e + (bfa')(x).

The boundarv operator adjoint to I' is T*, where for u sufficiently smooth

Becavse the Green's function is bounded it follows that if A3 holds

The assumptions Al-A4

s o o 4 P S N SR W P
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By

[e
r‘*u =

u(l),

o
The space H
P P, A,

Hy

with respect to the norm

N, 1/p
/l lulPax + £ o, Jux)|P s 1<p<w,
0 =0
2.2) Ilulle =<
Py
ull, D, P,
: whereNl=N-1if51=0andN1=NifBlaéo.
i:, o
i- The space HP’A can be easilv identified with Lp ® RNl, that is,
= (e o N
u = (u,dl,...,le)C Hy o = L, ®R 1, and
1 1/p
; P
tiall? + 1 e, ld, |1 , lp<e ,
L (1 .
p() j1 13
2.3) |lullp =4
P,
max(lfally (15, 14;11, P
\ i 3

o
In consistencv with our definition, we say u CZHp

d

N
3

ﬁ(xj) for j = 1,. 1

The space H2

’

[

is defined by Hz )
.

» NV for 1 < q <

LU

R
and le CH;(Ii). i=1,...
j .

C fade Bl S St

We now define the spaces and bilinear form used to pose (2.1) variationally.

1l <p <« is defined as the completion of

{uCH;(I): w(0) = 0, u(l) =0 if g

’

.= (vCHcll(I): v(0) = 0, v(1) = 0 if 8

+ a(l)] u(l) + eu' (1), if 61 #0,

if 81 =0,

o),

A N H;(I) if @ €:H;(I) and

1 0




For any v C,Hz _ . define l}'\lHZ by

,\.’.J
Gy,

N N-1 1-
T ./; |L*v|qu + tqlJ(V'(X.))lql. @
(2.4) 3=1 77 j=1 o
1/q
1_
lvll2 =% +hy Hrx) (Y, g,
g,c,2
1

max [ max ||L*v]| max elJC <Nl
1<j<N 1<j<N-1 !

\ XICS o NP IEI
(o}

On H X Hz .» where
p$A Qe

L (1)),

I |-
+
0
]

1, 1 < p 2 «, we define a bilinear form

B,(+,*) by

N N-1
(2.5) Bﬁ(u,v) = I ./ﬂ uL*vdx - I ed,.J(v'(x.)) + d. T*(v),
\ . I, . 3 3 N
j=1 j j=1
where J(v'(x.)) = v'(x.40) - v'(x.-0) for 1 < § <N -1, and v'(x, + 0) = lim v' (x).
] ] ] - - J - +
pag 38
]
The following results were proven in [9]
Lemma 2.1. (See |19] Lemma 2.6). Let v € Hi ., then
- ’
ﬁ. !BA(u,V)'
- v ll,2 = sup I
S Qs€ A o u o
b H H
A VR A Pyd
3
E . Theorem 2.2. (See [19] Theorem 2.8). 1If V’€:H§ e 1 then v € L_(I) F\H;(I) with
o] s &,y
t.
(2.6) ||v]] < clivil2z < llvl],2
. L(1) =" o1 HO o lzaze,
b;‘
¥
. and
7
8
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2 qQ,€,48

v 1 -
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where Cl and C2 are independent of v, q, ¢ and 4.

For the finite dimensional trial space, from which the approximation is

taken, we use s, = {u € c®Nr® :ul. is a polvnomial of degree <r}. For

J

A
§

I

the test space, two possibilities are considered. First, consider

(n)
() _ ’ _ o
SL Span ‘f,j i=1, , f\l, =-1, ,T—2
where
n . (x), on I, and I,
(n) 1,j +1
(2.8a) L*i_l’.
0, elsewhere,
()
. = s =
"l,i(xi) 1,3 for 1,] 1,...,N.
( X\
+n, . (¥x), onTI,
h, f’J b E)
(m 4
(2.8b) Léy, ;= <
0, elsewhere,
(n) k
e g(xg) =00 for 2= 0,12, 6,5 = 1,0,
Let n, = max [ In. . (x)]] and n = max n,
3 E=_ly-.-,r“2 "J L"(Ij)y

i

The following result guarentees that the finite element approximation

up C:Sr obtained when SL(”) is the test space is quasi-optimal in Ho . if n

9L

is sufficiently small.

e R R o Bamdndude, e
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Theorem 2.3 Let nbe sufficiently small and % + % = 1. Then there exists a

Do > 0 bounded awav from zero independently of ¢, such that

inf sup IBA(U,V)I > Do s for 1 < p <=
ves () u€ s
L r
Hvll,2 =1 |Jullo =1
Hq’E,A HP9A

(n)

It is shown in [19] Chapter 4 that the functions % ' can be found
)

explicitly such that nj < Ch,. Because these functions are of the form

a
0 . R
~ when » is large special quadrature rules are

P (y) + Pz(y)e‘Ay with A

needed to control the quadrature errors. In order to avoid this, the space

SL(n) is projected onto
(2.9) Sa(k) = Span { XR.J‘} =1, ..., Nj5 R=-1, ..., 1=2
where
er, Dy e R
2,5 ke, jog 1 i
with Pk denoting the L2 projection operator onto the first k + 1 Legendre
polynomials éo,..., ¢k on each interval Ij’ The following results holds
when S(k) is the test space,

o

(k)

Theorem 2.4. Let S ) be defined in (2.9) with k = 2r + 1, For v € n2

q,€ ,A

and f C:(Hé )' satisfying A3, define
»

EsA

0 if Bl = 0,
F(v) = <f,v> =~

v if 8, # 0,
1

Then the following hold: (See [19] Chapter 2 for a, and Theorems 3.3 and 5.3
for b, ¢, and d).

a) There is a unique solution u C,HO

0.0’ to BA(u,v) =F (v) for each
2 1 1 o
vEH 1< < =+ ==1, and u€ H .
q,C,A, q ©s ol q n u KX"A
9
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b) There exists an h,, independent of ¢ such that for all h « hg,

there exists a unique uQC Sr satisfying

- . , (k)
BA(un’Va) = F(\‘I) for each va€ SQ .

and a unique\ﬁJC Sr satisfying

BA(UL’VL) = F(VL) for each vLC SI(,n)
&) |lu-u|l,0 < Cinf [ lu - w|]|,0 s, 1 <p <o,
T wes, fo.8
_ r+2 (r+2)
d) HuL ucxHHO A: C max hj {||f |ILoc (1.)
P J J
(r+2) (r+l)
+ |Ia Ile (I.) + ||b Ill‘oo (I.)}
J J
for 1 <p <= andr > 1.
For the computations performed the spaces S1 and 853) were used as

the trial and test spaces. With these spaces, Theorem 2.4 yields

(2.10) ||u - ual IHO < C inf ||u - wl |H° + max thj3
Py & wCSl PyA 3j

where uais the piecewise linear finite element solution.

Numerical quadrature was performed by taking the piecewise cubic
interpolant of a(x) and piecewise quadratic interpolants of b(x) and f(x),
and then integrating exactly. Using this quadrature rule the finite element
solution u.hC S1 exists fur h sufficiently small, and the estimate (2.10)

holds with u, replaced by u The details of this result are omitted here but

he

are proven in (1§ for the general case using Sr as the trial space r > 1.

10

l DR
b

oo a o o A




CHAPTER 3

ASYMPTOTICALLY EXACT ERROR ESTIMATORS

Let
1 P o . - .
(3.1) KB,p,A = {u = (u,dl,...,dN)GZ Hp,A : di 0, i=1,...,N},
and
(3.2) K> = (v en’ Cv(x,) =0, j=1 N}
“) %B,q,4 I A O B AR

- with 1 < p,q < =, and %-+

!‘ B to represent the "bubble'-1like characteristic of functions which vanish at

= 1. These spaces are denoted by the subscript

each nodal point.

First, we consider an approximation to e = u - uL, where uLé: Sr is

, with n

the finite element solution obtained using the test space Sﬁn)

sufficiently small. Denote by Pe the solution of

(3.3) L(Pe) = L(e) = f - L(uL) in I

j’
; Pe(xj_l) = Pe(xj) = 0, j=1,...,N.
b
g Then Pe also solves the variational problem: find Pe CZK; p, A’ such that
b bl
. B 2 .
! (3.4) BA(Pe,v) = BA(e,v) for each v€E KB,q,A’ l<qc< e,
; Because of assumption A4, Pe CZH: A and is bounded independently of €. The
9
d following result shows that v + Pe is a superconvergent improvement of w
- Lemma 3.1 Let e = u - u and Pe be defined by (3.3) or (3.4). Assume
- nis sufficiently small (independently of ¢). Then
t' .
g lle - veffpo < Cnllellyo 1 <p <o
p’A p,A

11

Y T Y
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where C is independent of €, A, and n.

;]! Proof: By (2.3), (2.4) and Lemma 2.1 it follows that
|B,(u,v) |
ull,e = sup , 1<p<e.
H ”v“ 2 - -
p,24 €H2 H €. 4
V&q,e,4 drEs
Therefore,
IBA(e-Pe,v)l
(3.5) |]e - Pe] PHo = sup T™vTZ
v
P, 4 v{ﬂ2 Hq €,
q,€,4 T
For a given v € H2 let w_€ S(n) be such that
q,e,4’ v L
N (n)
(3.6) w,(x) = E V(xj)w_l’j (x),
j=1
(n)
where “’-1 j is defined by (2.8a). Clearly, wv(xj) = v(xj) and hence
v - VVCKB,q,A' Therefore,
3.7) BA(e-Pe,v—wv) = 0.
(n)

Also, v, € SL implies that

(3.8) BA(e,wv) = 0.

Equations (3.6) - (3.8) imply that

(3.9)  |By(e-Pe,v)| = |B,(Pe,w )]

1

8 N
: s d cerrapt canlivily Tieell, -
p =1 7 © P

12

b W PSP PN Gl G R VL SIS T VS WIE GO VNP VU VLSRG VTG Y UEIPA VU S . . - o otenadinen. P VU I SR U W W N




e ——— T T

Using (3.5) and (3.9) with Theorems 2.3 and 2.2 we obtain

llepellye < cnllrell, » 1<p =
Psh P

The desired result now follows provided n is sufficiently small.

As mentioned earlier n = 0(h), and hence if E = ||Pe||L , then E is
P
an asymptotically exact estimator to IleIIHo by Lemma 3.1. However, we seek
p,4

an estimator for e, = u-u, where u, is the finite element solution obtained by

(k)

using Sa as the test space.
Let Pe denote the solution to the problem: find Pe € K; such
a a 3Pyl

that
_ 2
BA(Pea,v) = BA(ea,v), for each v € KB,q,A, 1l <q < o,

Pe also solves (3.3) with e replaced by e . Hence Pe €n . By the
a o o o, A

triangle inequality we have

(3.10) HeOl - Peal|Ho i'llea - el]Ho + |le - PellHo
pP,A P9A PsA

+ ||Pe - Peallﬂo
p,4

First, consider the term w = Pe - Pea. By (3.3), w solves the equation

Lw = L(ua - uL)iIj in Ij

) = w(x,) =0, j=1,...,N.

i

It follows from the maximum principle, specifically see [19 Lemma 4.1, that

if hj is sufficiently small, then

13




DAE S— ML EWDS - Enaec

~ .-r_r:v,","u-l. Tt N, 0, nl.lfr"', .

§
"
’»
k

e b b DA TS 4

LI & . B g

SRl S RS SRS Rt A e A A e a0 g i el vk St oW M e acuatRe e e e+ . a v v

h

h
(3.11) IIW!|L (I y < € min —é'—gl IIL(uL-ua)lle(Ij)

On 1.,
j
L(uL-ua) = -e(uL-ua)" + a(X)(uL-ua)' + b(X)(uL—ua).

and hence by the local inverse theorem (since u —u €:Sr), we have

L
€ 1
(3.12) [ty gy =€l + =+ Wu- iy oy
E hj 3 * ]

Combining (3.11), (3.12), and Theorem 2.4q we obtain

r+2
(3.13) ||Pea - PeHL < C max hj ,

o h|
where C depends on a(x), b(x), and f(x), but is independent of ¢, and h.
Beginning with (3.10), and applying Theorem 2.4, Lemma 3.1, and

inequality (3.13), we obtain the following result.

Theorem 3.2. Let e, = u - u, where u, is the finite element solution

obtained when using Sék), with k = 2r + 1, as the test space. Let PeOl

be the projection of e, into Ké,p,A defined by

_ 2
BA(Pea,v) = BA(ea,v) for each v €:KB,q 1l < q< =,

07

Then by assumption A.3, Pea C:H: It and

lle, - Pe jlo < cinlle |l +C, max h;+2’ for 1 <p <=
p,A psh j

If a lower bound on the error of the type

(3.14) e Ilyo > ™

P,




is available, where C can be chosen independently of ¢ and A, then it

follows from Theorem 3.2 that

| 17e,lye | lle,7e, e
1 - —=| < =~ < C;n +C,h,
lle |l.0 e, I Tyo -1 "2
A pQA
9
Since n < Ch, it follows that E = ]IPeQIIHo is an asymptotically exact

P,
error estimator.

In order to justify (3.14), it suffices, for example, to suppose that

there is an interval Iog I for which

u € Cm(fo), but u € Sr(Io)’

and there exists a constant C > 0 such that for all meshes A in some class

inth, : 1, C ' )
min{ 3 5 & Io} > Ch(a)

For further details see [12]. In practice these conditions are not very
demanding, and no restrictions in the algorithm need be imposed.

We must now determine a way to compute ||P%|| W = E.
p,4

This value E need not be computed exactly (in general this is not possible),

but it could be approximated by some value E,, provided that EA is also an

asymptotically exact estimator.

Let w = Pea. Then w solves

-ew" + aw' +bwu=p onl

w(xj_l) = w(xj) =0,
where p = f - Lua is the residue. If we rescale this problem to I = [0,1],

15
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using the notation é(y) = g(xj_1 + hjy) for vy € [0,1], and dropping the

index j, the function w(y) solves

Consider the case when r = 1, i.e., linear trial functions. Let WA

be the solution to

3.1 L@y =-S5 kel = F dn I,

where a = d(l), and oy is the linear interpolant of p. The function QA(y)
is calculated explicitly in (3.31). Assume that h;/pllaAIILp(I) = ||wA||Lp(Ij)

= 1, can also be calculated exactly. The value Tj will be used as a local error

3

indicator and the estimator EA is calculated by

In order to prove that E, is an asymptotically exact estimator the

A

following results are needed.

~

Lemma 3.3 The Green's functions Gh(x]y) and Ch(x|y) for the operators L. and Lh

are positive and satisfv the following inequalities:
(3.17) 6 (xly) < ch(l-e" M)/, for all x,y € [0.1],

16
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—alh/e
h(l-e )/al, for all x,y € [0,1],

(3.18) &h(xly)

| A

and

-alh/éc

(3.19) éh(xly) yh(l-e )/4a,,  for

v
| A
<
|A

and

S =)
»
A
Sl %

1/2

where C is independent of ¢ and h, v = (ai + 4;&) , a a(l), and

1

é = min b(y).

Proof: Inequalities (3.17) and (3.18) follow directly from rescaling the
bound on the Green function established in [19], in proof of Theorem 2.5. For

v in (0,x%), Ch(xly) satisfies

L8 (x|y) = - =< -2 @y =o
Lh*n 20y TR Crly ’

]
t
Nl
~
[»})
=
N’

with boundary conditions

éh(x|0) = 0, and éh(xlx) = g(x).

where

s Maeae
- . —
A | ‘

)
g(x) = h?[fxehal(t—x)/sdt] [ fl ehalt/edt//'lehalt/edt] ]
0 X 0

For x € [%, %], g(x) > 2 [1 - e_halll‘s] .

v le*.;‘-... S

—Aal
2
i. -ha, /4c
t Let z(y) = fEL 1 -e 1 ]. Then
- 1
r<
< atk
b Lhz(y) <0
t‘ z(0) = 0, and

z(x) < g(x).

PP P N SRR
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From the maximum principle it follows that Gh(xly) > z(y) if

=

<X i'%, and
0 <y <x.

Theorem 3.4 Let w and QA be as defined in (3.15) and (3.16), respectively.
Assume that the approximate solution u, is piecewise linear, i.e., r = 1.

Then

~ - 3
ILEAN ILp(I) = Clh”wAHLp(I) * o

Proof: Since our attention will always be focused on the rescaled functions
on the interval I = [0,1] the "tilda" notation is dropped for this proof. For
a function g(y) on I we use the notation 8, = g(0+) and g = g(l-), and 8 is
the linear interpolant of g, i.e. gI(y) = 8 + y(gl-go). To avoid confusion
with fo(x) (see Assumption A3) we write 4{(x) = fo(x) in this proof.

Let z = w - wA. Then z solves

_ _E LS 52' =~ (a(y)-a ) '
Lhz = - z - + bz =p - ep - n Wy = b(y)wA, in I,
z(0) = z(1) = 0.

Write z = z, + zB + 2o where

(3.20) Lth =0 - OI’ zA(O) = ZA(l) =0,

(a-al)
= - ' = =

(3.21) Lth _—Tr——qu’ zB(O) ZB(l) 0,
and

(3.22) LhzC = -bwA, zC(O) = zc(l) = 0.

P Sy . .
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First, Consider zA(y). Bv assumption A4, a(x), b(x), and {(x) are
piecewise smooth. Also ua(x) is piecewise linear, and bounded (Theorem 2.4).

Therefore,

(3.23) (e () = B2K, (9 + u_ Ky(v)]

where KA(y) and KB(y) are bounded independently of € and h. By (3.20) and

(3.23)
e
(3.24) z,(x) = h .4: [KA(y) + U&KB(y)] Gh(XIy)dy-

Similarly, we may write

= - - . t
(3.25) oI(y) ny + y(p1 £S) Pyt yhiy, + u vgl »

where Ya and Y, are independent of ¢ and h. From (3.16) and (3.25) we have

B

1
{3.26) wy(x) = _4: (¢, + hyvgu!)C, (x|y)dy

1
+ f hy‘xACh(XIy)dy .
0
We now consider two separate cases.

Case 1. |60 - boua(xj-l)l 3.%|aou;|. In this case u; is bounded, and hence,

from (3.24) and Lemma 3.3,

(3.27) lz, 0] < ch’ .

Case 2. léo - boua(xj_l)l< %|a0u&|. In this case
' 1 '
%0 |6o - boua(xj-l) - aoua' z-5""0“&' :
This is further broken down into two subcases where either |u;| <1or
|u;| >1. If |ul] <1 we have (3.27) again. TIf |u'l>1, (3.26), (3.19),

(3.23) and (3.17) imply that for h sufficiently small,

19
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P
and
-vh
(3.28) lzgll, < ¢ @a-e"™Ohtnd .
P
Thus,
2
gy, < allwgll,
p P

When considering the term ZB’ since a is smooth,

a; - a(y) .
“——‘;:——‘— w, = C.(y)(A - y)w,

where Ca(y) is bounded independently of ¢ and h. Let t
v(t) by

v(t) = twA(l—t) + wA(l—t)

Then v(0) = 0 and v solves

3
- S V() - = v(t) = q(t) ,

h2 h

a
- EPC RN SIS
where q(t) —-th(l t) h wA(l t) .

Therefore,

-alh/e

lvll, < 2 (1-e yllall.  and
L= a L

(al—a(y))

L

~a_h/
wally s #pa-Mo ol

From this, (3.21) and (3.18),

20
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2 -ayh/
IZB(X)I < Ch (l-e M E)IIPI|‘L + Ch'!WAllL
1 1
We must now show that either !lc_ 1| <C h—ll!w I /(1—e—alh/c) or ||r. I < C h.
I Ll A L1 I L1
This can be shown by arguments analogous to those used discussing ]|2A1i1 . The

same two cases are distinguished as before. In addition Case 1 is split into

two subcases: ]po! > 2]:1-00‘ and lso] < 2[c1-pol.
Therefore,
i 3
(3029) HZBHL iclhllwA!,L + C2h
p 1
From (3.22) and (3.18) we have
(3.30) ”Z(:HL f_ChllwAHL
p 1

The theorem follows from the fact that w—wA =z, + zp + 2 and inequalities

(3.27)-(3.30).

Corollary 3.5. Suppose that (3.14) holds. Let

.
1/p

X r?
]

s
A
o
| A
B

max T. P = >

\ ]

ryrT——

" _ . 1/py- . - . , .
ti where Tj = hj IIWA"LP(I) with wA defined in (3.16). Then EA is an
[: asymptotically exact estimator to ifeafIHo for 1 < p <, when r = 1.
t_ p’A
[- Proof: This result follows from the triangle inequality and Theorems 3.2 and
3
.
- 3.4. Finally, we remark that Corollary 3.5 also holds when the effects of
3
4 quadrature are included. For details, again see [18].
21
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The problem of explicitly calculating [{wAllL (1) still remains. From
p

(3.16) we have

h.a,y/¢e 5
(3.31) w,(y) = A+ Be J +Cy 4+ DY

where

C = hj(Rl - RO)/Za1

2

D= tho/a1 + (R1 - Ro)/al

h.al/c)az

A=- (C+D)/(Q-e 1
B = -A

As before, a

1 o)

J

and Rl = R(1) R(x.)
J

When p = 2M, where M is a positive integer, 1, = h.|[w ll can be
J j A Lp(I)

computed exactly. However, all of the numerical results presented in the next

chapter are performed with p = 1. We do not know a-priori if w, will change

A
sign or not, and if it does, the zero of &A cannot be determined explicitly.
Therefore, if QA changes sign in I we cannot compute [lwA||L exactly.
1
Suppose that we let
1
Yt “/ﬁ W d
T, = h w,dv
A A
J 0

which can be easily calculated from (3.31). The next theorem shows that with

certain assumptions on the exact solution u, if

i=1

*
then EA is an asymptotically exact estimator to ||quHo
1,4

22
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Theorem 3.6. Let u be the exact solution and suppose that u" does not change
sign on any interval I,, i = 1,...,N. Also assume that u is suca that (3.14)
*

1
holds for r = 1. Then, if 1, = h.'d/~ w
1 ] 0 A

* *
and E, = T 1., then E, is an
A j=1 ] A

asymptotically exact estimator to ||ea||Ho ,» where e = u - u,.
1,4

Proof. By the triangle inequality, and Theorems 3.2 and 3.4 it follows that

He,l - Pew|| o + IlPeJ -w

3.32) |le, - w,ll ) AIIHO

1,7 1,4 1,n

| A
O
=
©
.+.
o
=y

Also, since wA(xj) =0, j =0,...4N

N
(3.33) lleu - wA[[HO = He,L - wAllLl(I) + I le”(xj)loj'
].,A j--]_
Inequality (3.32), and (3.33) imply that
N 3
(3.34) jzl !eq(xj)‘pj < C1h||eu||Ho +c,h.
1,4
. Let ei =e -eop where e 1 is the linear interpolant of e . Then,
N
(3.35) Ilea - eﬁ[lﬂo = "eYlllHo 2 jzl Ieu(xj)lpj
. 1,4 1,4
| 3
- §‘C1h||eai| o TG
. 1,8
- This shows that |]e*l| is an asymptotically exact estimator for ||e ||, 0 .
- wy *THy g
X ’
-
5 23
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Since e* does not change concavity on Ij, and e*(x,
a

= * =
* sop) = eX(x) =0,

= - |j ex

So

N
- ||le§|lL1(I) - EXI = Jfl | [e*]] Ll(IJ) _ jzl ﬁj w,dy
N
= jﬁl '/I‘j el '/1. Ya
i .
< jzl ﬁj el = Va

| A

e, = w,! < ey = wy Il + Hegll
AL @ » T vl ol 'L,

I

ClhlleaHHo + C,yh7,

1,4

where the last inequality followed from (3.32) and (3.35).

k¢ The assumption u" doesn't change sign locally, if violated, will in
general not disrupt the effectivity of the error estimator E*. If u" does

change sign in some interval Ij’ then Ij cannot lie within the boundary layer

or interior layer of the solution u. This is because in the boundary layer
region, Iu"| z_Cs-l, where C is independent of ¢ (see c.g. [10]). Suppose

that u is smroth in this interval and that u'" is bounded in I, independently of

3

€. Then, since u" vanishes at some point in I

j’

IeZ(x)I = Ju@x) - u )] < Ch?!u"(ix)| < Ch;, for x €1,
24




The value [|e3|[ o is an asymtotically exact estimator by Theorem 3.6, and

1,4

also, by assumption (3.14),

z'Chz.

[ e B4

*
Ileg !
521 O

Since IlegllL (1.) E_Ch?, the error on this interval is one higher order than
173 :

can be expected by the best approximation to u by a linear function on Ii.

Thus, in general, the error in this interval is negligible in its contribution

to the total error or an asymptotically exact error estimate. Even with this

consideration, the following precautionary measure is taken just in case this
assumption is violated.

Let

Q(s) = hj

£ 1
f @, ()dt - f aA(c)dc‘
o £

Bv (3.31) QA can have at most one zero in the open interval (0,1). If QA(E) =0
*
and £ € (0,1), then Q(£) = h ||w,|]|. = 1,. Also note that Q(1) = 1,. Let
3AL ] i

h llﬁ [{. = max Q(t.,), where
AT e
51 = 1/3, €y = 1/2
53 = 2/3, and £, = 1.
Then ||'[|Q is a norm over the space of functions ﬁA defined in (3.31).
Since this space is only two dimensional the norms l|-||Q and ||-:|L are

1

equivalent on this space. Therefore, if 13 = hjllaAllQ’ then C1 <

and furthermore the constants C., and C2 are independent of ¢

1 ]
T
_.1 < C
1 - 72 1
3 25
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and h. Thus, even if the assumption on u" is violated, we can still

e

quarantee that the estimator EA = T; satisfies

(@]
-
A
(1]
>
Q
A
(@]
N

with C1 and C2 independent of ¢, and A. For the computations presented in

the following chapter, 13 = thI&AIIQ was used as the error indicator for Ij'
In conclusion of this chapter we state a superconvergence result for the
errors at the nodal points.

Corollary 3.7: (Nodal superconvergence)

The nodal errors ea(xj) satisfy

N p
X lea(xj)| o,

5 scmlle [l o +#cp" 1< <o

J
Hp,A

Proof: For p = 1 this is (3.34). For p>1, the result follows by appropriately

modifying (3.32) and (3.33).
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CHAPTER 4

NUMERICAL RESULTS

As mentioned in the introduction, the equilibriation of the error
indicators Tj leads to an optimal mesh. An effective algorithm for performing
this task has been developed by Babuska and Rheinboldt,and implemented in FEARS

(Finite Element Adaptive Research Solver) ({2], {4], [11), @1 5]). This algorithm

makes a prediction on the error indicators after a future subdivision. The
predictions are calculated by assuming that the indicator of an element will decrease
bv essentiallv the same ratio as the last time it was subdivided. The maximum
predicted error is then used as the threshold value for subdivision--all
elements with indicators above the threshold are refined. The algorithm
continues to solve and then refine until the desired accuracy is attained.

Example 1 is a typical linear convection diffusion equation in which
all assumptions Al-A4 hold. A detailed description of the effectivity index
¢ and the rates of convergence for both uniform and adaptive meshes is

presented. Example 2 is a linear problem with a turning point which violates

assumption Al. Nevertheless, this problem was succesfully solved by the
algorithm. Example 3 is a non-linear turning point problem. The robustness of

the method is best displaved through the results obtained for this problem. 1In

A siibetac

all examples linear elements were used for the trial space.

Example 1: Consider the problem:

;- (4.1) =eu" +u' + (1 +e)u=-B-ea+ (1 + =) - B)x in (0,1)

u(0)

u(l) = 0

-(1+€)/ea

where a = 1 + e nd 8 =1+ enl. The exact solution to this problem

is

27
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- e(l+a)(x—l)/€ + ¥

U(X) - a + (1 - E)X.

This problem was studied by Kellogg and Han [9] , with the use of enriched
spaces. We remark that the results presented for this problem were typical
for all linear problems satisfying Al-A4.

The adaptive process of computing the error indicators, refining, and

then resolving, was initiated on a uniform mesh of four elements. The results

of each solution pass of the iteration for € = .01 are summarized in Table 1.

TABLE 1

Summary of results for the adaptive mesh
refinement procedure used on (4.1) with ¢ = .01.

NUMBER OF MAXIMUM RELATIVE EFFECTIVITY
ELEMENTS NODAL ERROR ERROR IN Hg’A ]
4 2.70E-4 1.19E-1 1.0877
5 2.62E-4 5.15E-2 1.0442
6 2.62E-4 2.27E-2 1.0204
7 2.62E-4 9.53E-3 1.0085
8 2.62E-4 4.99E-3 1.0067
12 2.97E-5 1.72E-3 1.0052
23 3.91E-6 4.68E-4 1.0034
35 2.05E-6 2.11E-4 1.0043
55 2.56E-7 7.65E-5 1.0009
102 1.77E-8 2.21E-5 1.0005
201 1.18E-9 5.69E-6 1.0003

One of the most important aspects of these computations is the

effectivity index € of the error estimate. Recall ¢ = E/[IeIIHO » where
1,4

28
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E is the computed error estimate and e = u - Uy is the exact error. The values
as listed in Table 1 reveal that the error estimate at worst is within 8.8%
of the true error, and this percentage decreases rapidly as the mesh is refined.
Graphs of the effectivity index are presented in Figures 1 and 2 as a
function of the number of elements. Figure 1 displays the values of f using
uniform meshes for ¢ in the range 10—10 to 1. Again, notice the improvement
in 6 as the number of elements increases. The rate of decrease of |1-6| on
uniform meshes is O(N-l) for ¢ 5_10—4, and O(N_z) for ¢ 3_10-1. Furthermore,
the fact that the graphs of 6 = eA(e,N) are nearly superimposed for ¢ §_10_3
indicates that BA(C,N) converges as ¢ » 0. The values eA(0+,N) provide an
upper bound for eA(e,N) on uniform meshes A.

6

Figure 2 compares the effectivities when ¢ = 10 ° using both uniform and

adaptively constructed meshes. With adaptive meshes, the graph of OA(E,N)
is no longer smooth, but it still lies beneath the graph of 6 for uniform
meshes. This behavior was typical for all values of € tested. The improvement
of the effectivities using adaptive meshes was even more profound on other

problems (see Example 2 or [1§]).

o
1,4

If N = N(A) is the number of degrees of freedom in the mesh, we will assume

Next, we examine the rates of convergence attained in the H norm.
that the error EN = ||e|lHo has the form EN = CN' Y. The rate vy 1s assumed
1,A

to depend on both ¢ and R, i.e., vy = v(e,R), where R is the relative error

Ex

TT;TT—B_— . Figure 3 shows the graphs of vy(e¢,.1), y(e,.01) and y(e,.0025),
H

1,a
when uniform meshes are used. For R < .0l the graphs begin with a value of
two and then decrease to one (or nearly one), as ¢ » 0. This transition from

two to one is delayed, as smaller relative errors are considered. The optimal

29
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! if 1/N >~ ¢) for uniform meshes

rates of convergence (N_2 if 1/N < ¢, and N
are reflected by these graphs.

Figure 4 shows the graphs of v(e, 10-2), v (e, 10—3), and y(e, 10—5), when
adaptively constructed meshes are employed. Notice that these graphs always
lie above or on the value Y = 2, which implies that the rates of convergence
observed are always O(N_z). It is also important to note that when using
adaptive meshes, the rate of convergence is unharmed as e -+ 0.

The rates of convergence using adaptive and uniform meshesfor e = 1, .0l.
and .0001, can also be seen from the slopes of the graphs of the relative H?,A
errors, displayed in Figure 5. By extrapolating the graph of the error for
€ = ,0001 using uniform meshes, it can be seen that in order to obtain the
same accuracy achieved with an adaptive mesh of 149 elements, approximately
17,000 uniform elements would be required. For smaller values of ¢ this effect
is even more pronounced.

The maximum nodal errors for this problem are displayed in Figure 6.

In each case, using both uniform and adaptively constructed meshes for ¢ = 1.0,
and .0001, the superconvergent rate of O(N-3) is attained. Notice that when

€ = .0001, the maximum nodal errors are smaller for uniform meshes than for

adaptive meshes. This unexpected result does not contradict the theory — the

(o}

adaptivity optimizes the mesh based on the errors in Hl A
9 bl

without regard to
the nodal errors.
To describe the distribution of the mesh points, we use the mesh grading

function EA(x). The function EA(x) is the piecewise linear function on the

mesh with the property

£p(xy) = &, 320, .. ..\

For example, on a uniform mesh, gA(x) = x. The derivative of EA(x) is a measure
30
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of the density of the mesh points. The mesh points will be heavily concentrated

in regions where &A(x) increases rapidly.

Figure 7 shows the graph of the mesh grading function when ¢ = .01, for
an adaptively constructed mesh of 201 elements. Note the heavy refinement in
the boundary layer region (near x = 1). The remainder of the nodal points
were distributed nearly uniformly throughout the rest of the interval. This
reflects the fact that u is smooth (although not linear) outside of the
boundary layer.

Example 2. Consider the following turning point problem:

(4.2) =eu" - xu' = cnzcos(wx) - (mx)sin(mx) on (-1,1),

u(-1) = -2, u(l) = 0.
The solution to this problem is
u(x) = cos(nx) + erf(x/v2e)/erf(1/V2¢),
which has an interior layer at x = 0.

Although this equation violates assumption Al at x = (0, the results

presented here reveal the robustness of.the algorithm and suggest that the

crucial theoretical results also hold for this type of problem.

(o}

1.A norm for € = .01
’

Figure 8 displays the graphs of the errors in the H
and .0001, using both uniform and adaptive meshes. The optimal rate of
convergence (O(N-z)), is quickly realized in all cases. The errors using
adaptive meshes are smaller than with uniform meshes, particularly when
e = .0001.

The graphs of the maximum nodal errors for € = .0001 are presented in
Figure 9. These graphs indicate that nodal superconvergence occurs even in
the presence of a turning point, provided adaptive meshes are used.

Figure 10 dispiays the graphs of the effectivity indices, eA(c,N), for

€ = .01, and .0001 using both uniform and adaptive meshes. Even on this

turning point problem, we have good gffectivity indices—at worst 8 = 1.72.
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Example 3: Consider one-dimensional flow in a duct of variable cross
sectional area. A one equation model for steady non-heat conducting,
viscous flow has been developed by Shubin and Stephens in [16] and [17].

This model is governed by the equation

(4.3) ~eu o + r, +G=0on (0,L)

where H 2
G = -(y=1)C(C -5 ) A'/A" +

+ v (Du + E/u)A'/Az,

r =X (bu + E/u),

D=D-¢A', D= (y+1)C/2y, and

E = (y-1)CH/Y.

vy.= 1.4 is the ratio of specific heats,
C = .68471 and H = 3.5 are constants,

A(x) = 1.398 + .347 tanh (.8 x - 4) is the
cross sectional area,
€ 1s the viscosity coefficient assumed to
be constant, and
u(x) is the velocity.
In the inviscid éase (e = 0), the velocity is sonic if uw = a = (E/D);i = 1.0801,
supersonic if u>a and subsonic if u<a. When the viscous problem is solved
with boundary conditions such that u(0)>a and u(L)<a an interior layer arises.
In the limiting case as ¢+0, this layer begomes a shock. The boundary conditions

used are u(0) = 1.299 and u(lL) = .505 with L = 10.

We solve the nonlinear problem by iterating on a linearization of the

equation. This procedure is described in [8] and referred to as a variant of

Newton-Kantorovich method. In general, consider the nonlinear problem
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1" L - : =
-eu" + F(x,u,u') = 0 in I [xo,xN]
u(xo) = a, u(xN) = R
The linearized boundary value problem for the Newton-Kantorovich iteration is
- " ' \J ] + 1
(4.4) eu’ 1 + Fu (x,um,um)u 1 Fu (x,um,um)um+1
= ' ' [ ' .
Fu(x,um,um)um+ Fu,(x,um,um)um F(x,um,um) in I,

u

m+1(xo) =

u (X) 89

m+l TN

The aim was now to use the continuation method with respect to
decreasing values of € together with intermittent mesh refinements based
on the linearized equation (4.4). This procedure was started using a large
value of ¢, a uniform mesh, and a linear solution u, which satisfied the
boundary conditions. For sufficiently large ¢ (¢ = .1), the iterative process
converged quickly. Using the continuation method, the value of ¢ would be
decreased bv a factor of about two. This would lead to convergence provided
the mesh was sufficiently refined and the approximation was sufficiently
close to the exact solution for the current €. In this manner the adaptive
method not only found accurate solutions and error estimates, but also
significantly increased the efficiency of the continuations used.

The computed solutions for ¢ = .1, .0l, and .001 are graphed in Figure 11.
The exact inviscid solution, which has a shock at x = 4.816 is practically
indistinguishable from the computed viscous solution with € = .001. The
effectivity indices and relative errors were also calculated with respect to

the exact viscous solutions and are shown in Table 2.
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TABLE 2

The effectivity indices and relative errors for

the duct flow problem

€ EFFECTIVITY TNDEX RELATIVE ERROR
.1 .78 .10E-2
.01 .83 .20E-3

v .001 .77 .33E-4

The exact solutions were approximated by a computed solution on a sufficiently
fine mesh. The mesh grading function for the ¢ = .00l solution with 84 elements
is displayed in Figure 12.

The interior layer of the solution contains a turning point of the
linearized equation (4.4). The turning point x, occurs when um(xt) = (E/ﬁ(xt))l’5
in which case Fu,(xt,um(xt),u%(xt)) = 0. If this point occured in an interior
region of an element, no upwinding was performed there. If Fu' was nearly

zero at one endpoint of an element and sufficiently large at the other endpoint,

then upwinding was performed based on the larger value. This corresponds to

the "switching schemes" derived in [16] and [17].
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